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An electronic analogue for supersonic flow 
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Department of Aeronautics, The Johns Hopkins University, Baltimore 

(Received 28 January 1957) 

SUMMARY 
An analogue method for solving certain quasi-linear hyperbolic 

partial differential equations is presented. The characteristic 
lines are formed by scanning electronically the screen of a cathode- 
ray tube. The boundary conditions are introduced in the form of 
an opaque mask. The solution appears as a picture on the screen 
of a second cathode-ray tube.. The experiments demonstrate the 
feasibility of the approach, but the development of the machine 
has not been carried beyond this stage. 

GENERAL DESCRIPTION OF THE METHOD 

There are well-established analogue methods for solving Laplace's 
equation, such as the use of an electrolytic tank or of a soap film, to mention 
just two. An extensive bibliography of such methods has been given by 
Higgins (1956). On the other hand, there has not been comparable progress 
in finding analogue methods for solving the wave equation. Step-by-step 
numerical or graphical solutions are available. For example, for two- 
dimensional flows that are hyperbolic everywhere, the method of 
characteristics is applicable. It is essential to recapitulate certain features 
of the method of characteristics for the present point of view. 

In the case of steady two-dimensional supersonic flow, there are two 
families of characteristic lines which can be regarded as a curvilinear 
coordinate system. In  the case of a uniform supersonic flow, these 
characteristic lines become two sets of parallel straight lines each forming 
the Mach angle with the flow direction. If the departures from uniform 
flow are small, these characteristics will differ only little from the straight 
" undisturbed ' characteristics. 

For the linearized theory of supersonic flow, the Characteristics are 
assumed to have fixed direction (independent of the solution), and only 
the higher approximations involve the ' warping ' of the characteristic lines. 

Scanning methods are essential features of the television technique, and 
they can be quite readily adapted to generate the characteristic lines. 
A spot moving on the screen of a cathode-ray tube can sweep according to 
a scanning programme of arbitrary complexity. Present commercial 
television uses a scan pattern that consists of one family of parallel straight 
lines (usually in the horizontal direction from left to right) which are formed 
sequentially in time. 
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If a scanning programme is devised so that the ordinary television scan 
is performed twice, first tilted with a positive then with a negative angle, 
two families of fixed characteristics ,can be generated. For practical reasons 
it is more convenient to generate the two sets of lines as part of a single 
scan pattern as given in figure 1. By using symmetrical triangular waves 
for vertical deflection and saw-tooth waves for horizontal deflection with 
only slightly differing frequencies, one obtains a dense scan pattern. The  
scan lines also appear to be ' reflected ' from the top and bottom edges of 
the scanned area. 

Y Y 

I I 

VERTICAL 

S' HORIZONTAL 

I 
t 

Figure 1. Scan pattern. 

By choosing the light intensity of the cathode-ray screen as the dependent 
variable, solutions to the linear wave equation can be obtained by simply 
holding the light intensity constant during each scan stroke, but varying 
it in an arbitrary manner between scan strokes. 

The  assignment .of light intensity for each scan stroke depends on the 
boundary conditions, and a simple method can be devised for introducing 
such boundary conditions. Suppose the light intensity is the integral of a 
function which is zero in the field, but not on the boundary. The  spot will 
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have constant intensity after it leaves the boundary and this constant can 
be set at the boundary. Pictures were obtained with the use of two 
cathode-ray tubes as indicated in figure 2. Identical scan patterns were 
applied to the two tubes. The first one, labelled SCANNER, sweeps in 
front of a cut-out mask giving light only when crossing the diamond-shaped 
slit. The light intensity is picked up by a, phototube, and is integrated by 
an integrating circuit. The integrand is different from zero only when the 
scan spot passes the cut-out area. The value of the integral is displayed on 
the second tube labelled DISPLAY. The light intensity is constant along 
scan lines outside of the ‘body’. Figure 3 (plate 1) shows the results of 
such an experiment. 

SCANNER DISPLAY 

Figure 2. Two cathode-ray tubes. 

The integrator can either be reset to zero at the extreme values of the 
vertical scan (figure 3(a),  plate l), or permitted to hold its value and be 
reset only when returning to the left vertical edge (figure 3 ( b ) ,  plate 1). 
This gives a different set of ‘ wall ’ boundary conditions. 

In an actual flow problem, the boundary conditions are imposed by the 
slope of the surface and not by the integral of body thickness as in the above 
example. However, it is quite possible to construct masks so that the 
integrated values of light transmittance inside the body contour are 
proportional to the slopes of the contour. 

The analogue for the linearized supersonic flow problem as described 
above appears to be quite trivial, and the interest in this method was mainly 
due to the fact that a certain amount of non-linear behaviour is rather 
easily introduced. If the disturbances are small but not infinitesimal, 
the principal effect of the non-linearity is to warp the characteristics by 
changing their local angle (and position) due to the change of the local 
Mach number and flow direction (see Lighthill 1954). In the analogue the 
simplest way to alter the characteristic angle is by changing one of the 
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scan velocities. For example, the horizontal velocity of the cathode-ray 
spot can be altered by an amount proportional to the magnitude of the 
disturbance. Since the scan is obtained by integration, this change in 
velocity also modifies the position of the scan line. 

For the non-linear operation, the boundary conditions are introduced 
in the same manner as for the linearized problem, namely, by scanning a 
mask as shown in figure 2. The video signal obtained from the phototube 
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HORIZONTAL SWEEP 
Figure 4. Formation of the horizontal sweep for non-linear operation. 

by scanning the cut-out mask is integrated, and this integrated signal is 
considered as the ‘disturbance’ function. This signal can be used to 
modify either or both the horizontal scan velocity and the light intensity of 
the cathode-ray spot on the DISPLAY tube. Figure 4 shows the modifi- 
cations of the horizontal scan by such an arrangement. Figure 5 shows 
a three-tone mask for a. diamond aerofoil giving the correct boundary 
conditions when used with an integrator. Since the slope can be both 
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positive and negative, the background is a neutral grey, and there are both 
positive (light) and negative (dark) areas contributing to the integral that 
represents the slope of the surface. 

BODY 

MASK 

Figure 5. Proposed three-tone mask for introducing proper boundary conditions in 
case of diamond aerofoil. 

ANALYSIS 
1. The second-order equation 

The steady two-dimensional flow of a perfect gas has been the subject 
of extensive theoretical studies during the last hundred years. If the flow 
is assumed to be isentropic and the viscosity and heat conduction are 
neglected, the assumption of potential flow is justified. 

Let us introduce the following quantities : 
x, y, Cartesian coordinates, 

+(x,y), velocity potential, 

q(x ,  y), absolute magnitude of the velocity, 
u(x, y), v(x,y),  velocity components in the x- and y-directions, 

c,  local speed of sound, 

y,  ratio of the specific heats. 
qm, maximum possible velocity of the gas, 
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The local speed of sound depends only on the absolute magnitude of 
the local velocity, 

c2 = g(, - l)(q2, -42) ; 

also 

The governing equation of the flow is (see, for example, Howarth 1953) 

(c2 - d3dZ.r - 2dz d, 4.w + (c2 - d3dW = 0. (2) 
This second-order non-linear partial differential equation is designated as 
' quasi-linear ' because the highest-order derivatives (+,,, dZY, dU,) all 
occur linearly, and only lower-order derivatives occur non-linearly. 

The equation is elliptic where the flow is subsonic, i.e. 

c2 > q 2  = I#:++;, 

c2 < q2 = +;+#I;. 

and hyperbolic where the flow is supersonic, i.e. 

There are few exact solutions of this equation. 

small perturbation 
Let us introduce the concept of an undisturbed flow and a superimposed 

d('% y )  = Vl x + c1+@, Y )  ; (3 r 
then u = G + C l # , ,  

and v = c1+,, 

where c = c1 when +:++: = 0. 
the Mach number of the undisturbed flow. 
that 

It is also convenient to use MI = Ul/cl, 
From equation (1) we find 

c2 = c?[l -+ (y -  1)(21w1+x+#:++3]. (4) 
By substituting c from (4) and 4 from (3)  into (2), we obtain a still exact 
equation for the disturbance potential + : 

[(M? - 1) + HY + 1)(2Ml+ +&z + HY - 1)+Y21#zz + 
+ 2+,(Ml + +Z)+.r?J - 

- [ I -  +(Y + w:- HY - 1)(2Ml+ +Z)#ZI#YY = 0. (5) 

Equation ( 5 )  can be simplified by eliminating certain higher-order 
Keeping only second-order terms and introducing /l; = M f -  1, we terms. 

obtain 
a 

[B; + (Y + 1)Ml +ZI+XZ - [ I -  (Y - 1)Ml +ZI+V, = -2M1z ($2). (6) 

Dividing through by 1 - (y - l)Ml #,, and again retaining only second-order 
terms in the expansion, we obtain 



An electronic analogue for supersonic flow 389 

where K = [ ( y+  1)+/3:(y- 1)]/2&. Equation (7), which is exact up to the 
second order, is in a convenient form for our present purpose. The right- 
hand side is proportional to v av/ax, and it vanishes as a second-order 
quantity when the x-axis is turned into the direction of the local flow. 
Since the purpose of the present analysis is to demonstrate the effect of 
non-linearity, the right-hand side of (7) is neglected and a modified second- 
.order equation used : 

[ P 1 +  K M l  +.c12+x2 - +uu = 0. 

( p l  + E)".,, - Eyu = - 2/31 €;. 

(8) 

E ( X , Y )  = KMl *2, (9) 

(10) 

If we introduce 

this becomes 

2. The linearized equation 

wave equation 

The general solution is 

where F and G are arbitrary functions. 

polytropic changes we have 

and the equation of state takes the form 

The linearized equation for the present problem is the well-known 

P:*xx-*uu = 0. (11) 

(12) +(x, r) = F(x + B1 Y )  + G(X - P 1  Y )  

The pressure disturbance is computed in the following manner. For 

pp-?' = const., (13) 

YP/P = c2(4). (14) 
We see that all thermodynamic properties are unique functions of the 

absolute velocity q. 

I n  the linearized approximation, we have 

The pressure takes the form 

p = Po( 1 - q2/q%)W-l). 

P = P 1 -  i P 1  m 2 * * M ?  

P = P 1 -  P 1  I M ,  9,. 

(15) 

(16) 

(16 a) 
If the wave equation is solved for a supersonic flow over a solid boundary 

y = f(x), the boundary conditions are imposed in the form that the flow 
direction must follow the tangent of the solid boundary ; thus 

If the oncoming flow is undisturbed, only one family of characteristics 
carries a signal (G = 0, or F = 0). One then obtains 

*u = 2 81*m (18) 

(19) 

(the sign depends on whether F or G vanishes), and 

P = P1-  i P l  U,2(2f'ld(M2 - 1)). 
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This shows that the local pressure disturbance is proportional to the local 
slope of the boundary. 

The lines 5 = x + ,!I1 y = const. and 7 = x - ,!Il y = const. are the- 
characteristics, and they form a fixed network of oblique lines (Mach 
lines) along which the disturbances ' propagate '. The linearized theory 
improves as the disturbance becomes smaller (very slender body), and is 
really valid only for the limiting case of infinitesimal disturbances. 

3 .  The analogue system 

Two families of lines are generated, and they are regarded as two sets 
of characteristics. With the use of a finite number of scan lines, there will 
be only discrete values of 5 and 7. 

The coordinates of the cathode-ray spot during the nth stroke are given 
as a function of time by 

X (  t )  = xo + ( t  - t0)X,  

Y ( t )  = ( t  - to)Y. 

(20)- 

(21) 

In  general X and Y are arbitrary functions of the time; Xo and to are 
arbitrary constants. By making a total of N strokes, the two sets of 
characteristics can be obtained in the following way. 

Choose for the nth stroke 
Xo= [,t for n even, 

qn for n odd, 
to = n At,  

X= v(pl + E n )  

where At is the period of one scan stroke, also 

for n even, 

V(,!Il+8,) for n odd, 

Y = (-  1)"V. (22 d) 
Here E,  and 6, are numbers for 0 < n < N, and they are introduced by 
the boundary conditions. For convenience, one can choose equal steps 
in t,, and qn, i.e. tn = np, and 'I, = np. Using a dense set of lines, the 
subscript can be dropped, and 5, 7 as well as 8, t can be considered as 
continuous variables. Thus 

5 = - A Y - E ( 5 ) y ,  (23 a). 
'I = X + P l Y  +8(7)Y .  (23 b) 

Observe that if E = 0 and 6 = 0, then 5 = const., and 'I = const. become 
the characteristics for the linearized problem. 

If E ( X , Y )  and 6(x,y) are regarded as the dependent variables, it is easy 
to verify that they obey the first-order partial differential equations 

(81 + E)EZ + Ey = 0, 

(B1 + S)S, - 6, = 0. 
(24) 

(25) 
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The variables c(x,y) and 6(x,y) each also obey the following second-order 
equation : I 

(pl + €)",, - EUY = - 2€; p1- 2 4 ,  
(pl + S)26,, - 6,, = - 2s: p1 - 266;. 

(26). 
(27) 

Naturally, these equations are valid separately, each for one family of- 
simple waves only. By comparing (26) with ( l o ) ,  it is found that they agree 
for all except the last term on the right-hand side, but that is of the third 
order. This agreement can be interpreted in the following way. 

The analogue generates simple wave solutions of the second-order 
hyperbolic partial differential equations (26) or (27). They are also simple 
wave solutions of the simplified second-order equation for the flow problem 
if a third-order term is disregarded. The dependent variable in both cases 
is the disturbance in the characteristic angle. For simple waves, the relation 
between E and the flow angle 8 is monotonic. This can be seen as follows. 

Using only the linearized approach from (18), we find (taking the upper 
half-plane) 

The increment in the absolute magnitude of the velocity vector becomes 

from ( l ) ,  we get 

and, from the definition of Mach number, 

*Y = -B1*2. ( 2 9  

dqlq = - delpl; (292 

(30) 

dMIM = dq/q- dell, ( 3 1 )  
dM/M = - ( 1  + &(y - 1)Mf) d8//31. (32) 

d p  = - M2( 1 + +(y - 1)Mf) d8/p?. 

dcfc = - &(y - 1)M: dqlq ; 

or 

Also, the change in the cotangent of the characteristic angle with respect 
to flow direction becomes 

( 3 3 l  
The characteristic makes an angle u with the x-axis given by 

cotu = P 1 + E ,  

a = p+d8 .  
After linearization, this becomes 

= /31+dP-M,2d8, 
E = dp-  M?dO, 

(34) 
(35) 

Equation (38) indicates that the disturbance to be imposed at the beginning 
of each scan stroke must be proportional to the surface slope, and the 
ratio constant is a function of the nominal Mach number of the flow. 

Since the value of E is constant during a scan stroke, the simplest way 
of imposing its value at the boundary is by integration. An integrating 
circuit holds the value of t during the scan. It is reset after each stroke. 
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The signal is built up before the cathode-ray spot leaves the body contour 
The boundary condition can be introduced as a variable opacity or variable 
thickness of a zone within the body. 

Figure 5 shows one simple method for introducing the right boundary 
condition. 

4. Light intensity of the screen 

The solution is obtained in the form of a photograph taken from the 
screen of the display cathode-ray tube. The light intensity on the cathode- 
ray tube is however, not proportional to €((), but depends on both the 
luminosity of the spot and on the duration the spot spends in the local area. 

Figure 6. Light intensity relations. 

In  order to find the relations between and the screen intensity, introduce 
i ( t ) ,  the instantaneous luminous intensity of the cathode-ray spot, and 
f ( x , y ) ,  the average luminous intensity per unit area of the screen. The 
intensity is held constant during a single stroke but varies from stroke to 
stroke. Note that i ( t )  and I ( x , y )  do not have the same dimensions. 
Introduce for convenience 

where ab is the total scanned area and T is the time of the entire scan cycle. 
The local intensity obeys the equation of conservation of (luminous) energy 

where A T  is the sum of time intervals the spot spends in the area AX Ay. 
The luminous intensity I ( x , y )  can be expressed as shown in figure 6. The 
small quadrangle is bounded by C1 = const., [ , + A 8  = const., y1 = const., 

I (x ,y )  Ax A y  = i ( t )  Z A T ,  (40) 
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and y1 + A-y = const. Let us assume successive scan lines correspond to 
equal increments in .$ (they are equidistant on the x-axis). The fraction 
of the number of scan lines that pass through the area is Af /2a  (the factor 2 
is due to the fact that there are two families of scan lines during a full scan 
cycle). The fraction of the time the spot spends within the area during 
a single stroke is Ayjb (the vertical velocity is constant), so that 

Z A T  A f A y  -- -- 
T 2ab a 

Substituting this value in (40), we obtain 

2&(t) A t  = q x ,  y )  Ax, 

or 

If the light intensity is modulated in intensity so that 

the luminous intensity of the screen becomes 

This is a significant result since it was previously shown that E is analogous 
to pressure (or density) within the range of linear approximation. In 
wind-tunnel experiments, the x derivative of the density is made visible 
optically by the schlieren method. This is the most common visualization 
method used in routine wind-tunnel work. If the luminosity of the spot 
(intensity modulation, or ‘Z-axis’) is varied according to the change of E 

from scan stroke to scan stroke, schlieren pictures result. 

EXPERIMENTS 

The experiments were carried out only to indicate feasibility of the 
method, and were not pursued to any degree of perfection. A flying-spot 
scanner previously described by Kovasznay & Joseph (1955) was modified 
for the present purpose, and many of the limitations of the original 
equipment determined the experiments that could be attempted. The 
block diagram of the equipment is shown in figure 7. 

The flying-spot generator produces a video signal corresponding to the 
transparent and opaque areas of the mask. A real image is formed in the 
plane of the mask by an objective lens and the signal obtained at the phototube 
is of the ‘ yes or no ’ type. A bi-stable trigger quantizes the phototube signal 
into a definite two-level signal (0 or 1). The reset integrator integrates the 
signal during one scan stroke. The integrator is reset to zero either at the 
end of the horizontal strokes or only at the end of both vertical and 

F.M. 2 D  
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horizontal strokes. In the former case, the waves ' reflect ' from the vertical 
edges of the scan pattern (see figure 3, plate 1) ; in the latter they do aot. 
If the masks were cut in such a way that the transparent portion along the 
scan line corresponded to the slope of the boundary, the signal obtained 
after integration becomes proportional to the E disturbance. In the analogue 
for the linearized problem, we can simply modulate the light intensity 
with this signal. Figure 3 (plate 1) was obtained in such a way (with the 
switch, shown in figure 7 ,  set on INTENSITY CONTROL). For non- 
linear operation, however, the horizontal scan velocity must be modified 
according to E. This 
circuit is essentially a second reset integrator. In  absence of a velocity 
control signal, it integrates a constant and X = PI V ,  and it is reset at equal 
intervals. The velocity control signal is added to the integrand, forming 
k = VP, + VE as required by (22 c). 

This is obtained by the variable velocity sweep. 

VELOCITY CONTROL 
INTEGRATOR 

- 
( NONLWEAR OPERATION ONLY 1 

El- STABLE 
TRIGGER - 

In the present experiments, the light intensity I,, was not varied 
according to (42), but was kept constant. In this way the flow pictures do  
not actually correspond to schlieren pictures. 

A more serious defect of the present experimental set-up is that the 
boundary conditions were not introduced correctly. The masks were 
simply cut out of black paper, thus giving two levels of the video signal. 
Every smooth closed body contour, however, has both positive and negative 
slopes. In order to formboth positive and negative disturbances, one needs 
at least a three-level discriminator instead of the bi-stable trigger, and this 
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Figure 3. Linear operation. (a) Integrator reset both at the end of each vertical and 
(b)  Integrator reset only at the end of horizontal horizontal scan stroke. 

scan stroke. 

Figurc 9. Non-linear analogue for supersonic flow. (a )  Mask scanned. (b)  Picture 
obtained on display. 
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Figure 8. Crowding of characteristics over concave surface. 

(4 ( b )  

Figurc 10. Different degrees of non-linear effect. ( a )  Weak non-linear effect. 
(b)  Strong non-linear effect. 
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was not available at the time of the experiments. There is really one 
exception to this comment. Figure 8 (plate 2) represents a concave ' body ', 
and the slope is approximately proportional to the local thickness so in this 
particular example the proper boundary conditions were applied. (A wedge 
with exponential contour satisfies the requirement that thickness is 
proportional to slope.) 

T o  modulate the light intensity in accordance with (42) would have 
required the use of a memory circuit to retain the value of from the previous. 
scan stroke, hence to form dc/df = €(en) - 

It  should be emphasized that both of these improvements (proper 
boundary conditions by use of three-level discriminator and light-intensity 
modulation according to (42)) require only standard electronic design, and 
were not attempted only for lack of time available for the work. 

Figure 8 (plate 2) clearly shows the crowding of characteristics into the 
formation of an envelope. Figure 9 (plate 1) shows the photographic print 
of the cut-out mask and the ' flow picture ' thus obtained. Since the period 
of scan cycle is constant and the horizontal scan velocity is variable, the 
right edge of the picture is irregular as the total x distance is varying with 
the disturbance. In order to render the pictures more ' life-like ', a small 
artifice was introduced. On the display cathode-ray tube intensity grid, 
a linear combination of the video signal and its time derivative was imposed. 
The negative value of the video signal from the phototube produced darkness 
in the interior of the body and the time derivative of the video signal gave 
a sharp outline of the body contours. Without this artifice the body contours 
would not even have been visible. 

Figure 10 (plate 2) shows two objects. In  the picture in figure lO(a) 
the non-linearity is ' weak ', having low amplification of the disturbance 
signal. 

As a possible extension of the method, the analogue for axisymmetric 
supersonic flows seems to be quite feasible. A more speculative proposition 
is the use of iteration. Using iterative processes, the first flow picture 
would be obtained by scanning a cut-out mask representing the boundary 
conditions. The display would be photographed and would be introduced 
into the scanner to obtain a second approximation. In this way, the 
interaction between the two families of characteristics would be introduced. 

The extension to the one-dimensional unsteady problem, where the 
cathode-ray face would represent the x , t  plane, is also obvious. I t  is 
interesting to note that in this case the analogue becomes exact for y = 3, 
as shown in the Appendix. 

In the other picture, the non-linear effect is strong. 

The present work was carried out in the National Bureau of Standards, 
Washington, D.C., under a cooperative programme of basic instrumental 
research and development while the author was a consultant. The author 
acknowledges the enthusiastic help of Mr H. M. Joseph and Mr N. Newman. 
Thanks are due to Dr B. T. Chu of Brown University for contributing the 
special case given in the Appendix. 

2 D 2  
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APPENDIX 
The  one-dimensional unsteady flow of a compressible gas presented on 

an (x, t)-plane has a qualitative similarity to the steady two-dimensional 
flow. The governing equations for an isentropic perfect gas are: 

(A 1) 

(A 2) 

ap ap au - +u- +p- = 0. 
a t  ax ax 

au au c 2 a p  
Conservation of momentum, - +u- + -- = 0. 

at ax ax 
By eliminating p, one obtains the pair of equations 

Conservation of mass, 

(A31 

(A 4) 
2 

Introduce the characteristic lines E = const. and 7 = const., i.e. with 
4 = f(x, t ) ,  q = q(x, t), so that 

Along these lines the characteristic relations are obtained : 
d t  = ~ x - ( u + c )  dt, d7 = ~ x - ( u - c )  dt. 

Along E = const., u+Zc/(y- 1) = const. 
Along 7 = const., u - 2c/(y - 1) = const. 

The  characteristic relations can be conveniently written as 

where ~ ( 4 )  and a(?) are arbitrary functions of their arguments. 
the characteristics will be curved lines. 

c + + ( y - l ) u  = C 0 + E ( E ) ,  c - i ( y - l ) u  = c0+6(q ) ,  

However, if y = 3, 
u s c  = c,+.(E), u - c  = - c0 -S(q ) .  

Consequently, the equations (A 5) can be independently integrated, giving, 
for instance, 

These equations represent two ' non-interacting ' sets of characteristics. 
Unfortunately all gases have y < 5/3. It is worth mentioning that 

shallow water flow has properties analogous to a two-dimensional gas flow 
with y = 2 (see Courant & Friedrichs 1948). 

4 = x - [Lo + 4 l t ,  7 = y + [fo + S(7)lt. (A 8) 
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